Antisense oligos to neuronal nitric oxide synthase aggravate motoneuron death induced by spinal root avulsion in adult rat.

نویسندگان

  • Lihua Zhou
  • Wutian Wu
چکیده

The present study used nitric oxide synthase (nNOS) antisense oligos (nNOS AS-ODN) to assess the role of nNOS in motoneuron death induced by spinal root avulsion. A right seventh cervical (C7) spinal root avulsion was performed on adult male Sprague-Dawley rats. Two weeks later, FITC-labeled random oligos (FITC-R-ODN), nNOS AS-ODN, R-ODN or TE buffer was applied to the lesioned side of the C7 spinal segment and refreshed every 3 days. FITC-R-ODN was first detected inside the injured motoneurons at 10 h, accumulated to a maximum by 24 h and faded out from 72 h. Following avulsion, nNOS AS-ODN decreased the number of nNOS-positive motoneurons in the lesioned segment compared either with buffer (P < 0.001 at 15 days, 3 and 4 weeks post-injury) or with R-ODN control (P = 0.002 at 15 days, P < 0.001 at 3 and 4 weeks post-injury). Interestingly, nNOS AS-ODN also decreased the number of surviving motoneurons compared either with buffer (P = 0.005 at 15 days, P < 0.001 at 3 or 4 weeks) or with R-ODN control (P < 0.001 at 3 or 4 weeks). Meanwhile, there were no significant differences between R-ODN and buffer control either in the number of nNOS-positive motoneurons (P = 0.245 at 15 days, P = 0.089 at 3 weeks and P = 0.162 at 4 weeks) or in the number of surviving motoneurons (P = 0.426 at 15 days, P = 0.321 at 3 weeks or P = 0.344 at 4 weeks). These findings indicate that nNOS AS-ODN, applied from 2 weeks after avulsion, aggravates the motoneuron death due to root avulsion by specifically down-regulating nNOS gene expression and that the expression of nNOS in adult spinal motoneurons in response to root avulsion may play a beneficial role in the survival of injured neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion.

Our previous studies have shown that nitric oxide synthase (NOS) can be induced in motoneurons after spinal root avulsion lesion and the lesion-induced NOS is coincident with the death of the injured neurons. The present study examined whether the death of injured motoneurons can be prevented by inhibition of NOS. Nitroarginine, a specific inhibitor of NOS, was injected into adult rats which un...

متن کامل

Survival of injured spinal motoneurons in adult rat upon treatment with glial cell line-derived neurotrophic factor at 2 weeks but not at 4 weeks after root avulsion.

We conducted a study of whether treatment with glial cell line-derived neurotrophic factor (GDNF) initiated at 2 or 4 weeks after spinal-root avulsion could promote survival and regulate neuronal nitric oxide synthase (nNOS) expression in adult rat spinal motoneurons. By 6 weeks after root avulsion, the treatment given at 2 weeks not only increased motoneuron survival (86.1% vs. 27.9%), but als...

متن کامل

Paclitaxel Inhibits Expression of Neuronal Nitric Oxide Synthase and Prevents Mitochondrial Dysfunction in Spinal Ventral Horn in Rats After C7 Spinal Root Avulsion.

AIM This study evaluated the neuroprotective effect of intrathecally infused paclitaxel in the prevention of motoneuron death and mitochondrial dysfunction following brachial plexus avulsion injury. MATERIAL AND METHODS Brachial root avulsion injury was induced in Sprague-Dawley rats. The Paclitaxel treatment group (n = 32) received a 5-d intrathecal infusion of paclitaxel (256 ng/d) via a mi...

متن کامل

Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT

Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord ...

متن کامل

Nicotinomid Adenin Dinucleotide Phosphate-Diaphorase (NADPH-d) Activity and CB-28 kDa Immunoreactivity in Spinal Neurons of Neonatal Rats after a Peripheral Nerve Lesion

Our previous studies have shown that median and ulnar nerve lesion induced calbindin (CB) immunoreactivity in some injured motoneurons in developing rats. Motoneuron death induced by sciatic nerve transection in neonatal rats has been related to induction of neuronal isoform of nitric oxide synthase (nNOS). The present study investigated whether expression of CB and nicotinomid adenin dinucleot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 197 1  شماره 

صفحات  -

تاریخ انتشار 2006